158 research outputs found

    Maximum thick paths in static and dynamic environments

    Get PDF
    AbstractWe consider the problem of finding a large number of disjoint paths for unit disks moving amidst static or dynamic obstacles. The problem is motivated by the capacity estimation problem in air traffic management, in which one must determine how many aircraft can safely move through a domain while avoiding each other and avoiding “no-fly zones” and predicted weather hazards. For the static case we give efficient exact algorithms, based on adapting the “continuous uppermost path” paradigm. As a by-product, we establish a continuous analogue of Menger's Theorem.Next we study the dynamic problem in which the obstacles may move, appear and disappear, and otherwise change with time in a known manner; in addition, the disks are required to enter/exit the domain during prescribed time intervals. Deciding the existence of just one path, even for a 0-radius disk, moving with bounded speed is NP-hard, as shown by Canny and Reif [J. Canny, J.H. Reif, New lower bound techniques for robot motion planning problems, in: Proc. 28th Annu. IEEE Sympos. Found. Comput. Sci., 1987, pp. 49–60]. Moreover, we observe that determining the existence of a given number of paths is hard even if the obstacles are static, and only the entry/exit time intervals are specified for the disks. This motivates studying “dual” approximations, compromising on the radius of the disks and on the maximum speed of motion.Our main result is a pseudopolynomial-time dual-approximation algorithm. If K unit disks, each moving with speed at most 1, can be routed through an environment, our algorithm finds (at least) K paths for disks of radius somewhat smaller than 1 moving with speed somewhat larger than 1

    The Lazy Bureaucrat Scheduling Problem

    Full text link
    We introduce a new class of scheduling problems in which the optimization is performed by the worker (single ``machine'') who performs the tasks. A typical worker's objective is to minimize the amount of work he does (he is ``lazy''), or more generally, to schedule as inefficiently (in some sense) as possible. The worker is subject to the constraint that he must be busy when there is work that he can do; we make this notion precise both in the preemptive and nonpreemptive settings. The resulting class of ``perverse'' scheduling problems, which we denote ``Lazy Bureaucrat Problems,'' gives rise to a rich set of new questions that explore the distinction between maximization and minimization in computing optimal schedules.Comment: 19 pages, 2 figures, Latex. To appear, Information and Computatio

    The Minimum Backlog Problem

    Full text link
    We study the minimum backlog problem (MBP). This online problem arises, e.g., in the context of sensor networks. We focus on two main variants of MBP. The discrete MBP is a 2-person game played on a graph G=(V,E)G=(V,E). The player is initially located at a vertex of the graph. In each time step, the adversary pours a total of one unit of water into cups that are located on the vertices of the graph, arbitrarily distributing the water among the cups. The player then moves from her current vertex to an adjacent vertex and empties the cup at that vertex. The player's objective is to minimize the backlog, i.e., the maximum amount of water in any cup at any time. The geometric MBP is a continuous-time version of the MBP: the cups are points in the two-dimensional plane, the adversary pours water continuously at a constant rate, and the player moves in the plane with unit speed. Again, the player's objective is to minimize the backlog. We show that the competitive ratio of any algorithm for the MBP has a lower bound of Ω(D)\Omega(D), where DD is the diameter of the graph (for the discrete MBP) or the diameter of the point set (for the geometric MBP). Therefore we focus on determining a strategy for the player that guarantees a uniform upper bound on the absolute value of the backlog. For the absolute value of the backlog there is a trivial lower bound of Ω(D)\Omega(D), and the deamortization analysis of Dietz and Sleator gives an upper bound of O(DlogN)O(D\log N) for NN cups. Our main result is a tight upper bound for the geometric MBP: we show that there is a strategy for the player that guarantees a backlog of O(D)O(D), independently of the number of cups.Comment: 1+16 pages, 3 figure

    Energy and system size dependence of \phi meson production in Cu+Cu and Au+Au collisions

    Get PDF
    We study the beam-energy and system-size dependence of \phi meson production (using the hadronic decay mode \phi -- K+K-) by comparing the new results from Cu+Cu collisions and previously reported Au+Au collisions at \sqrt{s_NN} = 62.4 and 200 GeV measured in the STAR experiment at RHIC. Data presented are from mid-rapidity (|y|<0.5) for 0.4 < pT < 5 GeV/c. At a given beam energy, the transverse momentum distributions for \phi mesons are observed to be similar in yield and shape for Cu+Cu and Au+Au colliding systems with similar average numbers of participating nucleons. The \phi meson yields in nucleus-nucleus collisions, normalised by the average number of participating nucleons, are found to be enhanced relative to those from p+p collisions with a different trend compared to strange baryons. The enhancement for \phi mesons is observed to be higher at \sqrt{s_NN} = 200 GeV compared to 62.4 GeV. These observations for the produced \phi(s\bar{s}) mesons clearly suggest that, at these collision energies, the source of enhancement of strange hadrons is related to the formation of a dense partonic medium in high energy nucleus-nucleus collisions and cannot be alone due to canonical suppression of their production in smaller systems.Comment: 20 pages and 5 figure

    Nutrition for the ageing brain: towards evidence for an optimal diet

    Get PDF
    As people age they become increasingly susceptible to chronic and extremely debilitating brain diseases. The precise cause of the neuronal degeneration underlying these disorders, and indeed normal brain ageing remains however elusive. Considering the limits of existing preventive methods, there is a desire to develop effective and safe strategies. Growing preclinical and clinical research in healthy individuals or at the early stage of cognitive decline has demonstrated the beneficial impact of nutrition on cognitive functions. The present review is the most recent in a series produced by the Nutrition and Mental Performance Task Force under the auspice of the International Life Sciences Institute Europe (ILSI Europe). The latest scientific advances specific to how dietary nutrients and non-nutrient may affect cognitive ageing are presented. Furthermore, several key points related to mechanisms contributing to brain ageing, pathological conditions affecting brain function, and brain biomarkers are also discussed. Overall, findings are inconsistent and fragmented and more research is warranted to determine the underlying mechanisms and to establish dose-response relationships for optimal brain maintenance in different population subgroups. Such approaches are likely to provide the necessary evidence to develop research portfolios that will inform about new dietary recommendations on how to prevent cognitive decline

    System size dependence of associated yields in hadron-triggered jets

    Get PDF
    We present results on the system size dependence of high transverse momentum di-hadron correlations at sNN\sqrt{s_{NN}} = 200 GeV as measured by STAR at RHIC. Measurements in d+Au, Cu+Cu and Au+Au collisions reveal similar jet-like correlation yields at small angular separation (Δϕ0\Delta\phi\sim0, Δη0\Delta\eta\sim0) for all systems and centralities. Previous measurements have shown that the away-side yield is suppressed in heavy-ion collisions. We present measurements of the away-side suppression as a function of transverse momentum and centrality in Cu+Cu and Au+Au collisions. The suppression is found to be similar in Cu+Cu and Au+Au collisions at a similar number of participants. The results are compared to theoretical calculations based on the parton quenching model and the modified fragmentation model. The observed differences between data and theory indicate that the correlated yields presented here will provide important constraints on medium density profile and energy loss model parameters.Comment: 12 pages, 5 figure

    Factors Associated with Revision Surgery after Internal Fixation of Hip Fractures

    Get PDF
    Background: Femoral neck fractures are associated with high rates of revision surgery after management with internal fixation. Using data from the Fixation using Alternative Implants for the Treatment of Hip fractures (FAITH) trial evaluating methods of internal fixation in patients with femoral neck fractures, we investigated associations between baseline and surgical factors and the need for revision surgery to promote healing, relieve pain, treat infection or improve function over 24 months postsurgery. Additionally, we investigated factors associated with (1) hardware removal and (2) implant exchange from cancellous screws (CS) or sliding hip screw (SHS) to total hip arthroplasty, hemiarthroplasty, or another internal fixation device. Methods: We identified 15 potential factors a priori that may be associated with revision surgery, 7 with hardware removal, and 14 with implant exchange. We used multivariable Cox proportional hazards analyses in our investigation. Results: Factors associated with increased risk of revision surgery included: female sex, [hazard ratio (HR) 1.79, 95% confidence interval (CI) 1.25-2.50; P = 0.001], higher body mass index (fo

    Geometric Shortest Paths and Network Optimization

    No full text
    Introduction A natural and well-studied problem in algorithmic graph theory and network optimization is that of computing a &quot;shortest path&quot; between two nodes, s and t, in a graph whose edges have &quot;weights&quot; associated with them, and we consider the &quot;length&quot; of a path to be the sum of the weights of the edges that comprise it. Efficient algorithms are well known for this problem, as briefly summarized below. The shortest path problem takes on a new dimension when considered in a geometric domain. In contrast to graphs, where the encoding of edges is explicit, a geometric instance of a shortest path problem is usually specified by giving geometric objects that implicitly encode the graph and its edge weights. Our goal in devising efficient geometric algorithms is generally to avoid explicit construction of the entire underlying graph, since the full induced graph may be very large (even exponential in the input size, or infinite). Computing an optima

    Approximation Algorithms for Geometric Separation Problems

    No full text
    We give polynomial-time approximation algorithms for some geometric separation problems: ffl Given a set of triangles T and a set S of points that lie within the union of the triangles, find a minimum-cardinality set, T 0 , of pairwise-disjoint triangles, each contained within some triangle of T , that cover the point set S. ffl Given finite sets of &quot;red&quot; and &quot;blue&quot; points in the plane, determine a simple polygon of fewest edges that separates the red points from the blue points. More generally, given finite sets of points of many color classes, determine a planar &quot;separating&quot; subdivision of minimum combinatorial complexity, which has the property that each face of the subdivision contains points of at most one color class; ffl Given two polyhedral terrains, P and Q, over a common support set (e.g., the unit square), with P lying above Q, compute a nested polyhedral terrain R that lies between P and Q such that R&apos;s vertices are among those of P and Q and R has a minimum number of..
    corecore